
Cheaper Adjoints by Reversing Address
Computations

L. Hascoët∗, J. Utke†, U. Naumann‡

November 30, 2007

Abstract

The reverse mode of automatic differentiation is widely used in sci-
ence and engineering. A severe bottleneck for the performance of the
reverse mode, however, is the necessity to recover certain intermediate
values of the program in reverse order. Among these values are computed
addresses, which traditionally are recovered through forward recompu-
tation and storage in memory. We propose an alternative approach for
recovery that uses inverse computation based on dependency information.
Address storage constitutes a significant portion of the overall storage re-
quirements. An example illustrates substantial gains that the proposed
approach yields and we show use cases in practical applications.
Keywords: program transformation, automatic differentiation, inverse
computation

1 Introduction

We consider Automatic Differentiation (AD) implemented via source code trans-
formation of a numerical program P . The result is an augmented program P+

that also computes derivative information. Derivatives have many uses in Sci-
entific Computing in general. Among these are gradients, which are central to
many practical applications such as for instance gradient-based optimization in
CFD [16] or variational data assimilation in weather forecasting or Earth sci-
ences [17]. A major application of AD methods is the computation of gradients
using the so-called reverse mode [12, 21]. The reverse mode of AD takes advan-
tage of the structure the underlying function, which has typically a large number
of input control variables versus very few or only one output cost function. The
idea of reversed differentiated programs is to propagate partial gradients back-
wards from the end of the given program. The reverse mode of AD is seen

∗INRIA Sophia-Antipolis, 2004 Route des lucioles, BP 93 06902 Valbonne, France
†corresponding author; Argonne National Laboratory, MCS, 9700 S. Cass Avenue, Ar-

gonne, IL 60439, USA; tel.: +1 630 252 4552; utke@mcs.anl.gov
‡Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany

1

as the discrete equivalent of solving the adjoint equations from optimal control
theory. An impressive number of successful application of AD to practically
relevant problems in science and engineering can be found in the proceedings
of the four international conferences on the subject held in 1991 [6], 1996 [3],
2000 [5], and 2004 [4]. Refer to [13] for a discussion of AD from a mathematical
perspective. The AD community maintains a webportal [2] with a vast amount
of information on research and development, tools, and applications.

In AD we consider P as a sequence of p elementary numerical operations

vi = φi(. . . , vj , . . .), i = 1, . . . , p .

Going in reverse order through the operations sequence, we generate for each
original operation φi a set of adjoint operations. Each individual set contains
one adjoint operation per active (see below) argument vj used in φi.

∀i = p, . . . , 1 : ∀vj argument in φi : v̄j = v̄j + ci,j ∗ v̄i

where
ci,j ≡ ∂φi(. . . , vj , . . .)

∂vj
.

Therefore the runtime cost of the reverse differentiated program is independent
from the number of inputs, and is in theory a small fixed multiple of the run-
time of P itself. In contrast, computing the gradient through classical tangent
directional differentiation, or even worse through divided differences, returns
the gradient elements one by one, at a cost proportional to the number of
inputs. This decisive advantage of the reverse mode makes it the most practi-
cal approach for today’s large-scale optimization or data assimilation problems.
Moreover divided differences produce merely an often low-quality approximation
of the derivatives. This inaccuracy may result in poor convergence of numerical
algorithms, for example, for nonlinear optimization with second derivatives [7].

The growing number of applications of reverse mode of AD motivates re-
search to refine the reverse differentiation algorithms. The recurrent difficulty
is memory (or runtime in recomputation-oriented stategies). Real-world pro-
grams have limited variable space and will overwrite values. The reverse-mode
adjoint operations, however, refer to many of these intermediate values and need
to recover them when they have been overwritten in the course of executing P .
Fundamental recovery strategies are to recompute or to store these values. The
computational effort implied by the first strategy is in principle quadratic to
that of computing P itself. The memory requirements of the second strategy
are in principle proportional to the number of floating-point operations executed
in P . For large programs, a general combination strategy called “checkpointing”
is unavoidable. Checkpointing balances storage requirements and recomputa-
tions, and can be made optimal in some model cases. Details on the reverse
mode, checkpointing, and control flow reversal can be found in [12].

For this paper we start out with the storing strategy and aim at reducing
the storage requirements through refined analysis and code transformation. For
the sake of simplicity the set R of values that must be recovered is detected

2

if (k > 10)
a[i] = x * b[i]
// add i, b[i] to R
· · ·

endif
// add k to R

// recover k
if (k > 10)

// recover i, b[i]
x = x + b[i]*a[i]
· · ·

endif

(a) (b)

Figure 1: (a) Example code section: the vector b is not considered active; (b)
values to be recovered and adjoint statements for reverse mode AD

by specific analysis, for example TBR [14]. In many applications, derivatives
are desired only for a subset of program variables, the active variables. Activ-
ity analysis accomplishes this separation and in conjunction with TBR further
shrinks R by filtering out variable instances that are not arguments for the com-
putation of the partial derivatives ci,j . Aside from the values used to compute
the ci,j , R also encompasses auxiliary values such as addresses and control flow
decisions. Figure 1 shows the reverse-mode AD of a small code example. While
b itself is not active, its elements are used in the partial derivative computation,
and they have to be recovered. To run the suggested adjoint code, we also must
recover the values of i and k, because they are used as indices and in the branch
condition. Here we assume that k is not overwritten within the if branch. If it
were, then we would have to refine the strategy. For example we could introduce
a temporary to retain the initial k, then store it just after the branch. We can
then retrieve the proper k before we enter the corresponding adjoint branch.

In the following we will consider sections of code that contain no checkpoints,
which implies split-mode reversal; see [12]. There may be checkpoints before
or after, though. We distinguish two phases. First is the forward sweep of the
section, consisting of the original code potentially augmented by statements to
store certain intermediate values. Second is the backward sweep, consisting of the
corresponding adjoint statements including reversed control flow and statements
to recover values referenced by the adjoint statements, the reversed control flow,
or address computations.

2 Motivating Example

Consider the example in Figure 2(a). The values of a[j] and a[k] are directly
needed to compute the partial derivatives and are in R. The values of k and
j occur as indices in the adjoint computation and therefore are also in R; see
Figure 2(b) or (c) and [8].

The standard approach pushes the elements of R at a certain point during
the forward sweep onto a stack and pops them at the corresponding point during
the backward sweep, for details see [12]. The implied stack growth is typically
mitigated by a checkpointing scheme that trades smaller stacks for recompu-

3

1 j=1
2 do while (j<6)
3 k=j+1
4 j=k+2
5 a[j]=a[k]*a[j]
6 end do

1 pop(j); pop(k)
2 do while (j>=1)
3 pop(a[j])
4 a[k]=a[k]+a[j]*a[j]
5 a[j]=a[k]*a[j]
6 k=j-2
7 j=k-1
8 end do

1 pop(j)
2 do while (j>=1)
3 pop(a[j])
4 k=j-2
5 a[k]=a[k]+a[j]*a[j]
6 a[j]=a[k]*a[j]
7 j=k-1
8 end do

(a) (b) (c)

Figure 2: Example code (a) for a loop reversal, incorrect backward sweep (b)
using a “statement-level recipe”, and correct backward sweep (c)

tations. Consequently, any reduction of the stack size reduces the required
recomputations and thereby has a direct impact on the overall performance.

A simple example is given in Figure 2. The pop calls on line 1 and 3 in
Figure 2(b) and (c) would be matched by adding the corresponding push calls
in (a) after line 6 and and before line 5 respectively. The use of inversion was
first described in [22]. Inspection of the code in Figure 2(a) suggests that one
should be able to use inversion of the address computation for j and k to recover
them during the backward sweep without any storage, except for the last j. In
other code examples, one may be able to compute that last value. The manual
transformation of the code as shown here is not as simple as the usual statement-
level recipe that is used for the adjoint statements. On this example such a naive
inversion would produce semantically incorrect code, as shown in Figure 2(b).

(a) (b) (c)
#1 #2 #2 #1 #2 #1

1 1,. 7,5 7,.
2 1,. 4,2 7,5 4,5 7,. 4,5
3 1,2 4,5 7,5 4,5 7,5 4,2
4 4,2 7,5 7,5 4,5 7,5 4,2
5 4,2 7,5 7,5 4,5 7,5 4,2
6 4,2 7,5 7,5 4,2 7,5 4,2
7 4,5 1,2 4,5 1,2
8 4,5 1,2 4,5 1,2

Figure 3: j,k per line number for two
iterations (#1 and #2) for the loop in
Figure 2(a) and the adjoint iterations
(#2 and #1) in Figure 2(b) and (c).

Figure 3 shows the values for j,k af-
ter executing each line for two loop it-
erations for the code versions (a), (b),
and (c). The boxed entries show the
wrong indices for the adjoint state-
ments on lines 4 and 5 as well as the
pop on line 3 in (b) in the second iter-
ation, which is the adjoint of the first
loop iteration in (a). The correct code
in Figure 2(c) properly restores the
values by observing the dependencies.
Note, that for choosing the adjoint in
(c) the code in (a) still has to be aug-
mented by the proper push calls cor-
responding to the pops of j and a[j]
on line 1 and 3, respectively.

For simple loop constructs such as
the Fortran (DO i=1,10), AD tools,
including OpenAD [23] and Tapenade [15] traditionally have been able to pro-
duce the proper adjoint loop avoiding storage of the loop index. This relies on
data-dependence analysis and the ability to recognize a canonical loop index
update and exit condition e.g. by matching a pattern. However, even a slight

4

deviation from these patterns prevents proper handling of otherwise semanti-
cally equivalent cases.

We have to fit the inverse computation concept shown in the example into
the source transformation context. Intuitively, we treat the integer assignments
as an equation system that allows us to compute the successive values of ad-
dress variables in reverse. We use each such assignment once to compute a
value. Immediately one important restriction is revealed: The approach works
only when the data dependencies imply a triangular system (as in our exam-
ple) for which we can generate the explicit solution code. When the implied

1 k=1; l=1;
2 do ...
3 j=k+l
4 k=j+3
5 l=j+2
6 end do

j

k

l

(a) (b)

Figure 4: Simple example code
(a) implying a nontriangular
system and the corresponding
dependency graph (b)

system is nontriangular, see, for example,
Figure 4(a), this code-transformation-based
approach is unable to compute the solution
values because it would in principle require
computer algebra or even nonlinear system
solvers, which clearly go beyond the source
transformation systems we consider. In the
simplified dependency graph shown in Fig-
ure 4(b) we see nontriangularity reflected
by the two loop-carried dependence arrows
reaching j that cannot be inverted separately.

The inverse computation that we are look-
ing for is closely related to induction variable
detection [25]. Actually, if one can discover that addresses are an affine function
of the iteration counter as is the case for j and k in Figure 2(a), then one can
recompute these addresses in reverse. However inversion does not even require
that addresses are affine. It suffices that the values needed by inversion, e.g.
the increments to j and k, retain their values during the program.

We aim to explore the semantic conditions that allow storage-saving inver-
sions. These provide a conceptual framework and algorithms for analysis and
code generation that include recognizing nontriangular systems and the ability
to fall back to storing values if necessary.

3 Framework

We define the set RA of the address variables used by the adjoint of active
statements, following the principal approach in [8, 14]. Without going into much
detail, we first determine the set of active variables by means of a particular
data flow analysis. For each of these active variables we determine whether it
uses a computed address. We consider a computed address any address that is
not a fixed offset into a stackframe, a fixed heap address, or a fixed offset into
the text segment. A fixed offset into the stack is, for instance, any local scalar
variable, but a local array A with nonconstant subscript A[i] has variable offset.
For dynamically allocated (heap) variables it is not quite as simple because they
are all allocated at runtime. However, when an array A[c] is allocated once,
not deallocated before process cleanup, and c is a constant, then we consider it

5

a fixed heap address. A branch condition involving only constant values would
be considered a fixed offset into the text segment. The last case is sometimes
used for model reconfiguration in lieu of preprocessing the source code. All such
computed address values are added to RA.

We have three principal options to recover the r ∈ RA:

1. Inversion: We can invert an assignment statement w = f(vi, i = 1..N)
that uses r ≡ vk in the right-hand side provided the right-hand side ex-
pression f is indeed invertible and the left-hand side value w and all the
other argument values vi,i!=k are known. Invertibility of the expression
graph f is given when all elementary operations φ on the path r → f are
invertible wrt the predecessor of φ in r → f in the usual mathematical
sense. Examples for the most common noninvertible practical operations
are max and integer division.

2. Forward recomputation: We can execute a statement (assignment) that
defines r provided all inputs are known.

3. Storage: We can store r. This is the fall-back option, if the previous two
are not applicable.

Aside from handling certain canonical loops, AD tools use only storage and
forward recomputation. For example, TAF and TAMC [9] by default rely on
forward recomputation, whereas Tapenade and OpenAD by default rely on stor-
age.

Figure 2 illustrates the importance of the data dependencies for the inver-
sion approach. The data-dependence graph as defined for example in [19] has
been used extensively to reschedule program statements. A prominent appli-
cation is parallelization [1, 24]. In the present context of reverse-mode AD,
the data-dependence graph appears as the appropriate data structure for our
transformation algorithm to find a scheduling of inversions and forward recom-
putation. We shall thus consider the subset of the data-dependence graph that
covers the definitions and the uses of the r ∈ RA.

As indicated earlier, we also consider control flow computations as gener-
alized address computations (of stack addresses). Therefore, we also add such
values to RA, that compute control flow affecting any source code section con-
taining active variables.

In the following, we will refer to variables or values in RA interchangeably
and understand them as a pair of address (name) and definition locations. In
practice this requires use-def chains [19] to traverse from a variable use to the
set of its possible definitions. For example, the use of variable j on the right-
hand side of line 3 in Figure 2(a) has a two element chain of definition locations
consisting of the assignment on line 1 and the assignment on line 4. Thinking in
terms of address-definition pairs simplifies the distinction between the successive
values that a variable holds before and after it is overwritten.

Given the use-def chains, we build the RA-dependency graph GA = (V , E)
using the expression graphs for the r ∈ RA extending from the leafs in these

6

expression graphs (uses) to the definitions and adding the defining statement’s
right-hand-side expression graph. In other words, the nodes v ∈ V are the ex-
pression graph nodes of address computation expressions, and the edges e ∈ E =
Ec∪Ef are the computation dependencies Ec from the expression graphs and flow
dependencies Ef from a given definition to the possible uses.

j

j
k

jk

kj

j

Figure 5: GA for Figure 2(a)

As an illustration, Figure 5 shows GA for the
loop in our motivating example of Figure 2(a).
All nodes defining a value are shown with a
thick border. All uses of values are shown
with a thin border. While GA can in princi-
ple be made to represent an entire program,
we consider a subgraph representative for a
section of code such as the loop shown in Fig-
ure 2(a). Therefore GA has a set of input
nodes VI ⊂ V , that is, nodes that have defini-
tion locations outside the code section of in-
terest. VI are definition nodes; see the thick-
bordered j at the top of Figure 5. Likewise GA has a set of output nodes
VO ⊂ V , that is, nodes with uses outside the code section of interest. VO are
use nodes; see the thin-bordered j at the very bottom of Figure 5. The RA

set itself consists of the two placeholders (shown on the bottom right) for uses
originating in line 5 in Figure 2(a). The actual adjoint uses are visible in lines 5
and 6 of Figure 2(c). In our example all computation dependencies are invert-
ible (denoted by a thick arrow), but invertible edges EI generally are a subset of
Ec. One choice of options for a given GA is called an inversion strategy, denoted
by S(GA). For a given strategy S we count the number of stored values (op-
tion 3) in |S|s and the number of forward computed values (option 2) as |S|f .
The general cost of a strategy can be written as c(S) = |S|s + α|S|f , where
α ≥ 0 is a tradeoff factor weighing computations versus storage. It is of course
rather difficult to determine α because it depends on many factors such as the
hardware, the compiler, and the order of magnitude of |S|s. Even a refined
recomputation strategy such as [10] can lead to substantial runtime penalties
and therefore non negligible α. As long as we choose to exclude in particular
loops from the scope of the GA we can assume that forward computations are
vastly less expensive than storage, that is, set α ≡ 0. Given the cost function
and the above framework, we formulate our problem as follows.

Recovery Problem: Assuming the values of a subset of V are known, how can we
combine recovery options 1–3 to obtain the values of all nodes in GA at minimal
cost?

The recovery problem is NP-complete [20]. For the practical applications in this
paper, we concentrate on loop bodies and therefore can often use a narrower
formulation relating to loop-carried flow dependencies [19, Section 9.3], namely,
dependencies that go from a variable definition during some iteration of a loop
to a use of this variable at a following iteration.
Loop Recovery Problem: Assuming the values of all outputs VO are known, how

7

can we combine recovery options 1–3 to obtain the values of nodes in RA and
the values of the nodes in VI that are destinations of loop-carried dependencies
originating from VO at minimal cost? Section 4 introduces an algorithm to
determine a strategy that relies on heuristics.

4 Algorithm for the Token Game

A known value of a node v in graph GA can be illustrated by a “token” placed on
that node. We define the predicate T (v) to be true iff node v has a token; false
(that is, the node does not have a token) is denoted by ¬T (v). Computing more
values allows us to place more tokens on nodes according to the rules implied
by the three recovery options, hence the name token game. The graph-based
approach provides more flexibility than the stack of states used in [22].

The goal of the algorithm is to find an inversion strategy S(GA) approximat-
ing minimal cost for a given GA and a given set of known values. In Section 3
we characterized the cost of the strategy by the storage it implies. Considering
the practical case of starting with known output values, a second-order consid-
eration, given the choice, can be the reduction of forward computations. To find
a “good” S(GA), the algorithm chooses inversion (option 1) whenever possible,
then forward recomputation (option 2), and falls back on storage (option 3)
only as a last resort.

Before we describe the option selection, we define how tokens propagate
across flow dependency edges e ∈ Ef . The token propagation is a simple process
we call saturation, formally defined as sat(GA).

Algorithm sat(GA) :
repeat:

propagate forward along flow dependencies:
Df := {v ∈ V : ¬T (v) ∧ ∀w : (w, v) ∈ Ef , T (w)}
∀v ∈ Df set T (v) := true

propagate backward along flow dependencies:
Db := {v ∈ V : ¬T (v) ∧ {w : (v, w) ∈ Ef ∧ T (w)} is sufficient}
∀v ∈ Db set T (v) := true

until Df ≡ Db ≡ ∅ !

This definition of sat(GA) aims at addressing the possibility of ambiguous defi-
nitions caused by control flow and aliasing. Saturation iterates until there are no
more nodes to which tokens can be propagated. Intuitively, a token propagates
in the direction of flow edges to use node v if v doesn’t have a token but all use-
def chain predecessors of v have tokens. Likewise, a token certainly propagates
in the opposite direction of flow edges to definition node v if v doesn’t have a
token but all def-use chain successors of v have tokens. However, because uses
do not mask one another, we can relax the condition for backward propagation:
in many occurrences, only a “sufficient” subset of the successors of v can be
enough to place a token on v. Specifically a subset is sufficient if the basic
blocks that contain these uses post-dominate the basic block that contains the

8

j

j
k

jk

kj

j

j

j
k

jk

kj

j

j

j
k

jk

kj

j

j

j
k

jk

kj

j

j

j
k

jk

kj

j

j

j
k

jk

kj

j

(a) (b) (c) (d) (e) (f)

Figure 6: Stages of tg(GA) for the initial GA from Figure 5

definition that is, all control paths flowing from the definition go through one
of these uses. For instance in the frequent case where all uses and the definition
belong to the same basic block, any single use is a sufficient subset. Because
of the source transformation context we have to make conservative assumptions
and account for all ambiguities. However, finding these sufficient subsets of
uses just depends on the structure of GA and of the control-flow graph. These
subsets can be precomputed so that they add very little runtime cost to our
algorithm.

The next step is the actual choice of options in the token game algorithm
tg(GA) where the initially known nodes v in graph GA already have tokens T (v)
and we have classified the invertible computation dependencies EI ⊆ Ec.
Algorithm tg(GA) :

repeat:
perform sat(GA)
if ∃v ∈ V where ¬T (v) ∧ ∃(v, w) ∈ EI : (T (w) ∧ ∀(u -= v, w) ∈ Ec, T (u))

choose inversion to recover v and set T (v) := true
else

if ∃w ∈ V where ¬T (w) ∧ ∀(v, w) ∈ Ec, T (v)
choose forward recomputation to recover w and set T (w) := true

else
use heuristic H(GA) to select a v ∈ V where ¬T (v)
choose storage to recover v and set T (v) := true

until ∀v ∈ V , T (v) !

To illustrate the practical use of the algorithm, we go back to the loop in our ex-
ample Figure 2(a). We assume we know the value of VO = {j} (see Figure 6(a))
and perform sat(GA), resulting in two more tokens shown in Figure 6(b). Note
that sat does not forward propagate through the loop-carried dependency. Now
tg(GA) finds v ≡ k as inversion target, we can generate the inversion code on
line 4 in Figure 2(c) and place the token T (k); see Figure 6(c). In the repeat loop
of tg(GA) we again perform sat(GA), which gives us two more tokens, as shown
in Figure 6(d). Now we have tokens in both nodes representing the uses in the
adjoint statements; that is, the code generator can now insert lines 5 and 6 in
Figure 2(c). In tg(GA) we then find v ≡ j as inversion target; see Figure 6(e).
We generate line 7 in Figure 2(c), perform another sat(GA) in the tg(GA) repeat
loop, and finish as all nodes have tokens; see Figure 6(f). Our inversion strategy
for this simple example has a cost of zero. In practice the code transformation

9

1 j=1
2 do while (j<6)
3 k=j+1
4 j=k+2
5 a[j]=a[k]*a[j]
4 j=j+1
5 a[k]=2*a[j]
6 end do

j

j
k

jk

kj

jj

j
k

j

1 pop(j)
2 do while (j>=1)
3 pop(a[j])
4 t=j-1
5 k=t-2
6 a[j]=a[j]+a[k]*2;
7 j=t
8 a[k]=a[j]*a[j]
9 a[j]=a[k]*a[j]

10 j=k-1
11 end do

(a) (b) (c)

Figure 7: Example code from Figure 2(a) with an overwrite of j and additional
uses in (a), the corresponding GA in (b), and the corresponding adjoint code
using a temporary t for the inversion in (c)

uses program variables that often will be overwritten as is the case here with
j. Data dependence graphs typically represent overwrites (a.k.a. antidependen-
cies) with dependencies from variable uses to variable overwrites. For simplicity
we did not show them in our examples and they are handled by introducing tem-
porary variables whenever the inversion strategy implies an overwrite before all
uses are accommodated. These temporaries are single-assignment variables with
a local scope limited to the adjoint sweep, in other words of very little cost when
compared to the stack storage we aim to minimize. For example, if we modify
Figure 2(a) slightly by inserting an overwrite of j and another use of j and k, see
lines 4 and 5 in Figure 7(a) we still can accomplish the inversion by introducing
a temporary t into the adjoint shown in Figure 7(c).

The heuristic H(GA), referenced in tg(GA), should select a node v that
permits the most subsequent inversions and forward recomputations which in
the following formal description are collected in sets T (v). The heuristic returns
a v with T (v) of maximal size.
Heuristic H(GA) :
∀v ∈ V in reverse topological order:

T (v) := ∅
if ¬T (v)

T (v) := {v}
∀(v, w) ∈ Ec:

if ∀(u -= v, w) ∈ Ec, T (u) (forward computation)
T (v) := T (v) ∪ T (w)

∀(v, w) ∈ Ef :
if ∀(u -= v, w) ∈ Ef , T (u) (forward saturation)

T (v) := T (v) ∪ T (w)
∀(w, v) ∈ Ef :

if {v} ∪ {u : (w, u) ∈ Ef ∧ T (u)} is sufficient (backward saturation)
T (v) := T (v) ∪ T (w)

return one of the v for which |T (v)| = max
w∈V

|T (w)| !

10

1 l=0
2 do while (l<ilB)
3 k = i-j
4 m = k+3+l
5 i = k+2*l
6 push(a[i]) // augm.
7 a[i] = a[j]*p[k]*a[m]
8 j = j+m+4
9 i = i+j+1

10 push(a[j]) // augm.
11 a[j] = a[i]*p[k]*a[m]
12 l = l+1
13 end do
14 push(i,j) // augm.

1 pop(j,i)
2 l = ilB
3 do while (l>=0)
4 t = i-j-1; // 1:i
5 l = l-1 // 2:i
6 k = t1-2*l; // 3:i
7 m = k+3+l; // 4:f
8 pop(a[j])
9 a[j]+=a[i]*p[k]*a[m]

10 a[m]+=a[i]*p[k]*a[j]
11 a[i]=0;
12 i = t;
13 j = j-m-4; // 5:i
14 pop(a[i])
15 a[j]+=a[i]*p[k]*a[m]
16 a[m]+=a[i]*p[k]*a[j]
17 a[i]=0;
18 i = k+j; // 6:i
19 end do

(a) (b)

Figure 8: Loop L augmented with push statements for the forward sweep in (a)
and its adjoint in (b)

Because inversion is not considered, this heuristic can be computed by a single
sweep over GA in reverse topological order. Figure 8 shows a loop a little more
complex than that in Figure 2(a), which we will use to illustrate the role of
forward computation and the heuristic. Figure 9(a) shows GA for the loop
body. For simplicity we left out the loop-carried dependencies and the extra use
nodes for the adjoints of lines 7 and 11. GA shows the known output values for i,
j, and l. Figure 9(b) shows the state in the fourth iteration when no inversion is
possible and we have to pick the forward computation of m. Figure 9(c) has the
final state after the token algorithm runs to completion. Figure 8(b) shows the
resulting statements for the address computations along with the actual adjoint
statements for lines 7 and 11 of (a). Again no storage is required. However,
if we change line 5 of Figure 8(a) to something noninvertible, for example i =
max (k, 2*l), then in the third iteration we have to resort to our heuristic H .
It finds the definition node for k because its trigger set T (k) is the only one
with the maximal cardinality 5. We place the token as shown in Figure 9(d).

o=0
do while(o<oLB)

i=j=o
L
o=o+1

end do

Figure 10: Wrapper for loop L
from Figure 8(a)

To illustrate the amount of storage saved
and the ensuing consequences for the adjoint
computation, we wrap the loop L shown in
Figure 8(a) into an outer loop that initial-
izes i and j so that the accesses into array
a are spread out; see Figure 10. The par-
tial derivatives in the adjoint statements refer
to the products p[k]*a(m), a[i]*p[k], and
a[j]*p[k], and the adjoint variables a(.)
need the indices i, j, k, and m. Simple for-

11

l i j

i j

k

k
l

l
k

i
m

m j
l

j

i j

i

l i j

l
3:s

i j

i j

k 4:s

k
3:i

l
3:sl

2:i
k
4:s

i
2:s

m

m j
l

1:s j
1:s

i
1:i

j
1:s

i
1:s

l i j

l
3:s

i
7:s

j
6:s

i
6:i

j
6:s

k 4:s

k
3:i

l
3:sl

2:i
k
4:s

i
2:s

m 4:f

m
5:s

j
5:il

1:s j
1:s

i
1:i

j
1:s

i
1:s

l i j

l
3:s

i j

i j

k 3:h

k
l

3:sl
2:i

k

i
2:s

m

m j
l

1:s j
1:s

i
1:i

j
1:s

i
1:s

l i j

(a) (b) (c) (d)

Figure 9: Performing tg(GA) for the example in Figure 8 at initial (a), interme-
diate (b) and final (c) state; a modified example uses the heuristic (d)

ward recomputation of the indices costs O((ilB ∗ olB)2). Storing all indices
requires a memory size of O(ilB ∗ olB). A few experiments with ilB fixed to
10 show the practical effects on memory consumption in the following table:

Time in µs Memory
olB P Ps Pi size of a ti in Ps ti in Pi tf

102 27 100 93 599 5200 2 · 102 2 · 103

104 2865 10672 9477 10499 5200000 2 · 104 2 · 105

106 297109 1,154878 1,133269 1000499 52000000 2 · 106 2 · 107

107 2,985838 - 11,612644 10000499 - 2 · 107 2 · 108

The integers stack size is ti, the floats stack size is tf . Already for a total comput-
ing time of less than 3 seconds run on an average laptop, the store-all approach
(Ps) fails to allocate sufficient memory to contain all the required integer values
for the indices, while the inversion-based approach (Pi) is still able to complete
the adjoint computation because it requires an integer tape that is an order
of magnitude smaller. Larger problem sizes (i.e., longer execution times) will
cause the plain inversion-based approach to fail as well because of the float tape
size and will require (hierarchical) checkpointing. The table shows no significant
runtime savings in Pi over Ps because the dominating factor is the nonlocal ac-
cess pattern to the vector a and, in the reverse sweep, its corresponding adjoint
vector a. However, when the lack of memory forces the use of hierarchical check-
pointing, we will observe a significant increase in execution time. Consequently,
any reduction in taping memory requirements will reduce the number of re-
computations incurred by checkpointing and thereby result in runtime savings.
While our example is somewhat academic, it illustrates nicely the direct effect of
the inversion approach on the efficiency of the resulting derivative computation.

12

5 Practical Examples

This section shows the occurrence of index computations, similar to the aca-
demic example in the previous sections, for practical uses. We emphasize once
more that, aside from the quantitative savings, we aim at qualitatively char-
acterizing the possibility of inversion in cases that are not amenable to the
pattern-based approach used so far.

5.1 Irregular Meshes

Irregular meshes made of triangles or tetrahedra are more flexible than regular
meshes. In particular, irregular meshes lend themselves easily to incremental

DO ic=1,nca
nsg1 = icola(ic-1)+1
nsg2 = icola(ic)
DO iseg=nsg1,nsg2
nuor = nubo(1,iseg)
nuex = nubo(2,iseg)
vx=coor(1,nuex)-coor(1,nuor)
vy=coor(2,nuex)-coor(2,nuor)
dpex=f1(nuex)*vx+f2(nuex)*vy
...
rh4(nuor) = rh4(nuor)+dpl
rh4(nuex) = rh4(nuex)-dpl

ENDDO
ENDDO

Figure 11: Code section from a
2D Navier-Stokes solver on ir-
regular meshes

mesh refinement or adaption, yielding more
accurate results. With irregular meshes, ac-
cess to a neighbor mesh element uses tables
known as indirection arrays, rather than mere
index offsets. For our work, this makes inver-
sion the choice option only for loop indices,
whereas forward recomputation is the option
for computing neighbor indices. Figure 11
shows a typical loop from a 2D Navier-Stokes
solver [11] running on irregular meshes. Loop
indices ic and iseg are easily inverted, and
index variables nsg1, nsg2, nuor, and nuex
are cheaply recomputed forward from ic,
iseg, and constant indirection arrays icola
and nubo. For the complete Navier-Stokes
solver corresponding to Figure 11 we mea-
sured the total memory traffic on the storage
stack, that is, the number of bytes pushed
on the stack while computing the gradient. With the default storage-based
strategy, this is 3204 Mbytes. When inversion and forward recomputation are
incorporated, traffic goes down to 2992 Mbytes. Runtime also improves, here
by 8%, because recomputing index variables forward is actually much cheaper
than storing them. Memory traffic and runtime would decrease further if re-
computation was applied to cheap float variables such as vx, but this is beyond
the scope of this paper.

5.2 Ocean and Weather Modeling

The MIT general circulation model [18] is designed for study of the atmosphere,
ocean, and climate. It consists of a number of source code packages each repre-
senting various aspects of the physics and chemistry processes in the ocean and
atmosphere using regular discretizations. Therefore, most of the iteration loops
follow a very regular pattern, with a few exceptions as shown in Figure 12(a).
Without going into much detail of the particular purpose of the code, we see that

13

do ...
kUp = 1+MOD(k+1,2)
kDown = 1+MOD(k,2)
...
*(fVerT(i,j,kDown)...
...

end do

DO j = max(jts,jbe-spec_zone+1), jtf
b_dist = jbe - j
b_limit = b_dist
DO k = kts, ktf
DO i = max(its,b_limit+ibs), min(itf,ibe-b_limit)
i_inner = max(i,ibs+spec_zone)
i_inner = min(i_inner,ibe-spec_zone)
field(i,k,j) = field(i_inner,k,jbe-spec_zone)

ENDDO
ENDDO

ENDDO

(a) (b)

Figure 12: Code sections with loop constructs from MITgcm (a) and WRF (b)

an inversion of the loop variable combined with forward computation of kUp and
kDown avoids storing the values of both of these variables. The amount of saved
storage is two times the problem-dependent number of vertical layers times the
number of invocations of that routine per time step where the time step is the
natural choice for a checkpointed segment. Figure 12(b) shows an example of
similar nature with an index computation that is found with minor variations
throughout the source files in the Weather Research and Forecasting [26] model.
Here too the savings in storage for just this loop can be expressed as the product
of the number of iterations in each of the three nested loops for the i inner
index and additionally the recomputation of the loop bounds for the two inner
loops.

5.3 Livermore Loops Examples

Both examples shown in Figure 14 exhibit complicated index computations that
do not lend themselves to any pattern-based search. Using the token game algo

DO k = k1, ktf
k2 = ktf
DO WHILE(z_base(k2) .gt. z00(k))
k2 = k2 - 1

ENDDO
if(k2+1.gt.ktf)then
u00(k) = u_base(k2) + (u_base(k2)

...
....
endif

ENDDO

Figure 13: Example from WRF

rithm, one will find that for exam-
ple Figure 14 (a) we will need to store
the final value of ipntp and the val-
ues of ii because of the integer divi-
sion. The data dependencies in Fig-
ure 14(b) are rather obscured by the
control flow. However, aside from the
loop variable k and l, we have m, k2,
and k3 loop-carried by the inner loop.
While k2 and k3 lend themselves to
inversion given their final values, we
also see that m cannot be recovered in
this fashion because the update at la-
bel 460 depends on the condition in-
volving m in the line above. Therefore we have to either store m in every inner
loop iteration or store a Boolean value indicating whether the condition evalu-
ated to true or false. This scenario is not uncommon. For instance, it occurs

14

ii = n;
ipntp = 0;
do {
ipnt = ipntp;
ipntp += ii;
ii /= 2;
i = ipntp - 1;
for (k=ipnt+1; k<ipntp; k=k+2) {
i++;
x[i] = x[k]-v[k]*x[k-1]-v[k+1]*x[k+1];

}
} while (ii>0);

DO 485 L= 1,Loop
m= 1

405 i1= m
410 j2= (n+n)*(m-1)+1

DO 470 k= 1,n
k2= k2+1
j4= j2+k+k
j5= ZONE(j4)
IF(j5-n) 420,475,450

415 IF(j5-n+II) 430,425,425
420 IF(j5-n+LB) 435,415,415
425 IF(PLAN(j5)-R) 445,480,440
430 IF(PLAN(j5)-S) 445,480,440
435 IF(PLAN(j5)-T) 445,480,440
440 IF(ZONE(j4-1)) 455,485,470
445 IF(ZONE(j4-1)) 470,485,455
450 k3= k3+1

IF(D(j5)-(D(j5-1)*
.(T-D(j5-2))**2+(S-D(j5-3))**2
.+(R-D(j5-4))**2)) 445,480,440

455 m= m+1
IF(m-ZONE(1)) 465,465,460

460 m= 1
465 IF(i1-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

(a) (b)

Figure 14: Examples from the Livermore Loops: Incomplete Cholesky Conju-
gate Gradient (a), Monte Carlo search loop (b)

15

in the WRF code as shown in Figure 13, although one might argue that the
update loop for k2 is in principle inexpensive to recompute assuming that the
array values in z base and z00 are available.

6 Summary and Outlook

The approach presented here has two main benefits. First, we introduce a cri-
terion for loop inversions that is based solely on dependency information. It
does not rely on any particular pattern for loop constructs with designated loop
variables and restrictions on updates. Second, we show how the inversion op-
erations can be combined with forward computations to reduce the amount of
stored values, which in turn yields an efficiency gain for the adjoint computa-
tion. Because we rely on dependency information provided by a compiler-style
source code analysis as input, practical concerns particularly about the possible
aliasing of variables are covered. Replacing storage operations with inversions
and recomputations is beneficial as long as the recomputations are “cheap”,
as is typically the case for address computations. In such circumstances (im-
plying the tradeoff factor α ≡ 0), the algorithm introduced here will always
result in an improvement of the generated adjoint code in particular when it
enables recovery purely by inversion. It can therefore be generically applied to
the adjoint transformation engine and does not require validation by runtime
measurements.

If one considers more expensive recomputations, e.g. involving the reexecu-
tion of loops as suggest by the last example in Section 5, then the problem lies
with finding the proper α > 0. Further research will concentrate on the question
what categories of more complex recomputations, in particular cases involving
subroutine calls and loops can be recognized at transformation time and be in-
cluded while assuming α ≡ 0. Another part of our ongoing research aims at
integrating the token game algorithm into an interprocedural framework.

Acknowledgements

Jean Utke was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy under Contract DE-AC02-
06CH11357.

References

[1] J. Allen and K. Kennedy. Automatic translation of Fortran programs to
vector form. ACM Transactions on Programming Languages and Systems,
9(4):491–542, 1987.

[2] Autodiff.org portal. http://www.autodiff.org.

16

[3] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational
Differentiation: Techniques, Applications, and Tools, Proceedings Series.
SIAM, 1996.

[4] M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors.
Automatic Differentiation: Applications, Theory, and Tools, volume 50 of
LNCSE, Berlin, 2005. Springer.

[5] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors.
Automatic Differentiation of Algorithms – From Simulation to Optimiza-
tion, Computer and Information Science, New York, 2002. Springer.

[6] G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory,
Implementation, and Application, Proceedings Series. SIAM, 1991.

[7] R. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale
optimization. Math. Prog., 26:190–212, 1982.

[8] C. Faure and U. Naumann. Minimizing the tape size. pages 293–298.
Chapter 34 in [5].

[9] R. Giering. Tangent linear and Adjoint Model Compiler, Users manual.
Technical report, 1997. http://www.autodiff.com/tamc.

[10] R. Giering and T. Kaminski. Recomputations in reverse mode AD. pages
283–291. Chapter 34 in [5].

[11] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in
Fluid Dynamics. SIAM, Philadephia, 1998.

[12] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algo-
rithmic Differentiation, volume 19 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, 2000.

[13] A. Griewank. A mathematical view of automatic differentiation. In Acta
Numerica, volume 12, pages 321–398. Cambridge University Press, 2003.

[14] L. Hascoët, U. Naumann, and V. Pascual. “To be recorded” analysis in
reverse-mode automatic differentiation. Future Generation Comp. Syst.,
21(8):1401–1417, 2005.

[15] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical report
300, INRIA, 2004. http://www.inria.fr/rrrt/rt-0300.html.

[16] A. Jameson. Aerodynamic design via control theory. Journal of Scientific
Computing, 3:233–260, 1988.

[17] F.-X. le Dimet and O. Talagrand. Variational algorithms for analysis and
assimilation of meteorological observations: theoretical aspects. Tellus,
38A:97–110, 1986.

17

[18] MITgcm. http://mitgcm.org.

[19] S. Muchnick. Advanced Compiler Design and Implementation. Academic
Press, San Diego, 1997.

[20] U. Naumann. On optimal DAG reversal. Technical Report AIB-2007-05,
RWTH Aachen, March 2007.

[21] G. Ostrowski, Y. Volin, and W. Borisov. Über die Berechnung von
Ableitungen. Wissenschaftliche Zeitschrift der Technischen Hochschule für
Chemie, Leuna Merseburg, 13:382–384, 1971.

[22] Dmitri Shiriaev. Fast Automatic Differentiation for Vector Processors and
Reduction of the Spatial Complexity in a Source Translation Environment.
PhD thesis, Institut für angewandte Mathematik, Universität Karlsruhe,
1993.

[23] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach,
C. Hill, and C. Wunsch. OpenAD/F: A modular, open-source tool for
automatic differentiation of Fortran codes. ACM Transactions on Mathe-
matical Software, 34(4), 2008.

[24] M. Wolf and M Lam. A loop transformation theory and an algorithm
to maximize parallelism. IEEE transactions on parallel and distributed
systems, 2(4):452–471, 1991.

[25] M. Wolfe. Beyond induction variables. In Proceedings of ACM Sigplan
Programming Languages Design and Implementation, 1992.

[26] WRF. http://www.wrf-model.org.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

18

